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Abstract

This paper is concerned primarily with determining the mutual coherence
function of the field produced by a plane quasi-monochromatic source in a re-
gion of variable refractive index. A scalar theory is used throughout.

A brief review of the conceptual background of coherence theory is pre-
sented in Section 1. Section 2 contains an outline of the mathematical formal-
ism of coherence theory and shows that in a region of variable refractive index
the mutual coherence function is propagated according to a pair of inhomoge-
neous scalar wave equations. In Section 3 the pair of wave equations are solved
with appropriate Green's functions, An expression is derived for the mutual
coherence function of a field produced by a plane quasi-monochromatic source.
In Section 4 the case of a statistically homogeneous medium is treated and an
expression for the ensemble average of the mutual coherence function is obtained
in terms of integrals of the two-point correlation function characterizing the
medjum.



ON THE MUTUAL COHERENCE FUNCTION
IN AN INHOMOGENEOUS MEDIUM

1. Introduction

The development of coherence theory has been strongly influenced by re-
gsearch in visual optics. The theory is concerned with the behavior of electro-
magnetic fields at frequencies so high that measurements can be made only by
averaging intensities over periods of time that are long compared with the times
involved for individual fluctuations of the fields. The fields are assumed to have
stationary time dependence, at least for the intervals of the averaging periods.

In an advanced theory of optical behavior, the concepts of amplitude and
phase, which are often helpful in other branches of electromagnetic theory and
in elementary optics, are no longer useful. The usefulness of these concepts
breaks down not only because the high frequencies involved in optics make it im-
possible to measure the amplitude and phase of field components, but even more
fundamentally, light in its usual form (the superposition of a large number of
randomly timed statistically independent pulses) is not strictly monochromatic
but consists of spectra of finite widths. Indeed, under the conditions stated it
cannot be analyzed even by a Fourier decomposition into strictly monochromatic
components because only the power carried by a narrow band of wavelengths
can be measured.

In the more elementary theory of optical behavior, the concepts of ampli-
tude and phase presuppose a strictly monochromatic source of illumination and
are not measurable quantities (at least in the optics realm). The basic quantities
in coherence theory (time-averaged intensities and functions that express the
degree of correlation between the vibrations at different points in the field),
however, are measurable and do not presuppose the nature of the field. Further-
more, as limiting cases, coherence theory yields not only a strictly monochro-
matic theory, but also a theory of incoherent radiation (addition of intensities)
and gives anaccurate description of the region of partially coherent light between

these two limits.
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2. Outline of Mathematical Formalism of the Theory

The fundamental entities of coherence theory — the mutal coherence func-
tion and the complex degree of coherence — will be introduced in this section,
and the wave equations for the propagation of the mutual coherence function in
an inhomogeneous medium will be derived. For the most part, theorems will
be stated and the reader referred to the literature for proofs and further dis-

cussion,

In a source=-free, although not necessarily homogeneous, medium the real
scalar function of position and time Vr(f, t) satisfies the scalar wave equation

. 8%V(P, )
2

v2vi(p, 1) =

ckp) at

where P is the position vector. (It will occasionally be convenient to indicate
position by a subscript or to omit explicit spatial dependence,)

The intensity of V'(t) averaged over an interval of time of length 2T is
given by the expression

T
L S vT e, 1 12 at.
2T v-T
In the following applications, T will be extremely large in terms of time units
of the order of the actual fluctuations (for example, the mean period 1/v where
v is the mean frequency of the disturbance), It is therefore convenient to let
T - in expressions for the time-averaged intensity and for the correlation
functions to be introduced below. It is assumed, of course, that the
T

lim L [VE(®, 9124t

Teo 2T “-T -
is finite,

A complex function V(P, t), the analytic signal, is associated with the real
function Vr(_lf, t). The advantages of choosing the analytic signal as a complex
representation of the disturbance have already been discussed at length, 2 The
analytic signal may be defined in terms of Hilbert transforms as follows:

Let f°(t) be a real function of time such that its Hilbert transform exists
(a sufficient condition is square integrability); the analytic signal, f(t) [associ-
ated with £7(t) ], is defined to be f(t) = ' (t) + ifi(t), where fi(t) is the Hilbert
transform of £7(t); that is,

. * 00 r
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The integral sign [* denotes that the Cauchy principal value is taken at t'=t.
Although V¥ (t) is in general not square integrable, itis possibleto employ
ananalytic signal representationby the stratagem of truncating Vi) ata particular
value, t=T, and then let T—=oo . Thus, let

r
vip; T, 9= V @0 Itl<T
0 t|>T
and the associated analytic signal V(P;T,t) be given by

VBT, 0 = VBT, ) +igViR, 1)
where
VB, = HIVEE; T, 1],
It should be noted that TVi(_lj’, t) is not a truncated function,

In terms of these functions the basic quantities of coherence theory, the
mutual coherence function, and the complex degree of coherence may be pre-
cisely defined. The mutual coherence function I" (El, B, Ty = ’"12‘” is defined
as the complex cross correlation between the analytic signal representation of
the real field at the two points El and 22; that is,

oo
L =i S'_w V(T,t+7) Vi (T, 0 dt

T—.uo
The time average and limiting process is denoted by sharp brackets:

M(m = {v,e+7) vViw>.

By use of the theorem that the cross correlation of the two real functions is
equal to the cross correlation of their Hilbert transforms in the same order, 3
it can be readily shown that the time-averaged intensity Im at the point Pm is
given by 1/2 I', . (0); that is,

1= v Tw2> =1/2 L, (0, m=12).

Also, by use of the theorem that the convolution of two analytic signals is itself
an analytic signal, it can be shown® that 1'12(1’) is an analytic signal. From the
last result it follows! that 1"12(1) possesses a Fourier spectrum that is zero
for half the frequency range. Thus

0 /\ .
= =2rivT
Lat)= | Fwe7a



where

A had ;
1"12(1/) = g l"lz('r) 2™V T4 =g p<o.
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It should be noted here that in formulating the solution to actual problems,
expressions of the form <V1(‘cl )V, *(t2+t)> are usually obtained. Under

the change of variables t' =t +1,, < v @+ 1) \L >“(t1)> is obtained, where T =
ty-t;. The additional assumption of stationarity of V(t) (that is, the time aver-
ages are independent of the choice of time origin, or equivalently that the time
averages are a function of the difference in time only) is necessary to equate
() with {V (48 Y, %ty + 0.

A normalized form of the mutual coherence function, called the complex
degree of coherence and denoted by y 12(7'), is very useful in coherence theory;
v 12(1‘) is defined to be

r ()
(7)= 12

Y12 \/———————- )
I“ll(o) I, (0

Withthe Schwartz inequality it can be shown that Oglylz(‘r) I < 1. The limits
characterize incoherent radiation and coherent radiation respectively.

The important result that r'lz(‘r) is propagated according to a pair of wave
equations will now be proved. Specifically:

2
0" I'(B, By, 7)

: ; L m=1,2. (21

2
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Here the Laplacian sz acts onthe coordinates of the point Bm (m=1, 2), and tne
spatial dependence of the velocity of propagation is indicated.

To prove Eq. (2.1), it is assumed that Vr(_P_’, i), hence the truncated function
Vr(l’; T, t) satisfies the scalar wave equation

VIV T, 1) = 22 v"- (PZ; T, 1) @.2)
c?(p) ot
Also, as defined above
. #o o _r
V@, 1 =%§_w VET L g, (2.3)

Both sides of Eq. (2.3) are operated on with the Laplacian V2, the order of
operations is interchanged, and with the theorem4 that the Hilbert transform of
the derivative of a function equals the derivative of the Hilbert transform of the
function, the following is obtained:



2,1
8 "VIU(P, t)
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Multiplication of Eq. (2.4) by i and addition to Eq, (2, 2) yields

2 1 8%V(R;T, t)

VYV T, 1) = — =t (2.5)
- C

(P) at
Thus, the analytic signal itself satisfies the wave equation.

Now

1i ©
F(®LPy,T) = Taw  — S V(B T, t+7) V¥ (By; T, 1) dt. (2.6)
== 9T Yow = =

Equation (2, 6) is differentiated with respect to El’ the order of operations is
interchanged, and Eq. (2.5) is substituted, yielding

L

2 _ lim 1 2 *
V) e s, S_w v, 2 [V (T, t+7) 1V, (T, ) at
lim ® 1 62V1(T, t+7)
2T C (Pl) a7
1 22 I (1)
= T .
cip) or® 12
Similarly,
2
° I (1)
v,% Iy m = = 2,
Ciey ot

and the proof is complete.

3. Mutual Coherence Function in an Inhomogeneous Medium

The central problem of this paper is the determination of the mutual co-
herence function for a field produced by an extended polychromatic source in a
region of variable index of refraction. In the discussion, S is an arbitrary sur-
face containing an extended polychromatic source with a known distribution of
mutual coherence; P and P, are points in the illuminated field V; and S, and S,
are points on the surface S.

As shown above, the propagation of the mutual coherence function in a source-
free but inhomogeneous medium is governed by the pair of wave equations

2
3" Iy (1)
—, m=1,2 (3.1

2
v “r, (1) =
-1m



It is assumed that I ,(7) is known for all pairs of points 8, and 5, on the surface
S.

Let 12(1/) be the Fourier transform of 1"12(1-). Then, as stated above,
since fiz (7) is an analytic signal, its Fourier spectrum contains positive fre-

quencies only; that is,

_ * -2mipT
112(-r)—So iiz(v)e dv (3.2)
where
1’*12<u>=§_w (e ar, (3. 3)

Substitution from Eq. (3.2) and Eq. (3. 1) and interchange of the order of in-
tegration and differentiation yields

S‘ (% + ey 20] ﬁz(v)e'z"i"" dv =0 (m=1,2). (3.4)
(o]

Since Eq. (3.4) holds for all 7,

v,% +1*@, w1 Fe, By, 0= 0 (3. 5a)

v,2 + k%2, 0] P, Py, 0 =0 (3. 5b)

Here k (P, v) = 27v/C(P). Thus, each spestral component of 1'12(7' ) satisfies
the pair of Helmholtz equations, Eqs. (3. 5a and b).

In Eq. (3.5a), 22 is a fixed parameter so far as the operator is concerned.
In particular, Eq.(3.5a) holds if 22 is a fixed point §20n a closed surface S.
The equation then becomes

2

A
v,°+ k%@, 01 I, S, 1) = 0, (3.6)

A
The boundary condition for Eq. (3. 6) is the known values of I’(§1, Sy, V). Hence,

the problem is to solve the pair of equations
2 2 A _
"+ kB, NI TR, §,v) =0 (3. 7a)
A
with I’ (§1, S4, V) known on the boundary, and

A
(% + K*(B,, ] T, B,, v = 0 (3. 7b)



A
with f'(gl, Sy V) known on the boundary as a result of solving Eq. (3. 7a).
A formal solution to Eqs. (3.7a and b) can be obtained easily in terms of
the Green's function G (P, P') which satisfies the equation
(v2 + k2(P)) G(P, P) = -6 (P-P") (3.8)

and which vanishes on the boundary S. In the case that S is plane, the Green's
function must be chosen not only to vanish on the boundary plane but also to
satisfy the radiation condition at infinity.

In the same way as if k were a constant, the following is obtained:

8G, (B}, 5, 3G,(E,, 55"

. A A L, '
Pe.ey-( § Peopsy ds,' ds,’. (3.9)
Sl

' an,! any'
8,s, 1 2
In Eq. (3.9) and in following equations primes are used to indicate the
variables of integration, and corresponding subscripts and primes attached
to the surface S also serve this purpose. Explicit dependence onthe frequency v
has been omitted for conciseness. It will be shown below that G2 = Gl*.

An explicit form for G (P, P') can be obtained using an iterative procedure,
Equation (3. 8) is rewritten to represent k2(_1?, V) as the sum of a fixed mean
value kZ(V) and a variable part with zero mean, kz(v)e (P, v). Thus,

2+ k% G, P = -6(P-P")-k%(P) G (P, P"). (3.10)

(Physically €(P) can be said to be the variable part of the dielectric constant of
the medium.) Now Eq. (3. 10) can be formally taken to be an inhomogeneous
constant-coefficient Helmholtz equation with the right-hand side as the source
term. Acc -dingly, a solution to Ef. (3.10) can be obtained in terms of the
Green's fui. n g(P, P") which satisfies the constant coefficient equation

(vZ2 + k% g(@, P") = -6(B-P") (3.11)
and vanishes on the boundary surface. Since g also vanishes on the surface,
GE P =g® P+’ [ c@m @, By @ B avr.

Vll
Equation (3. 12) can now be used as the basis for an iterative development:

G(P, P") = g(P, P") + kzg €(P") g(P", P") g(P", P) dV"

Ve (3.13)
4 ; " " " "'
+ k S S‘ € (E") € (gvll) g(gu.l' P'") g(g , El) g(g s E) RATALRIG A TAL

AVALIR AR 2]

(3.12)

+..

Substitution of the iterative series Eq. (3.13) into Eq. (3.9) yields the following
expression for the Fourier transform of the mutual coherence function;



8g1(_1_31, §1') 6g2 (22' §2')
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A ag (P, S,") %, BN 8 .,
+RZS Sr(g ,’§ ) 2 =2 =2 S‘ E(P " gl(P " pl) _I_L dvl d§1‘ d§2'

5,'5, Mty oy’

2 AL B EBLS) " u %Py 8
+1k2{ (P, sy o S €(B,") g,(P,", B) 4v," ds ds,
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F(Ep gg) 'g‘ r(_S_l '§.2) -1 =2

|CI)L’3

lm

' 1 " a" 1
S2 S v2 9
2 For 5 v opy 21 " gg 1 ag
TR s T2 0 O e @ B 6,0 2 ey ay oy s,
5.'S any' ‘vn‘vm oy
=2 l 1

. A . vy B BB B ByLs L
+k S SI‘(SI. 2')5 S‘ B e(®)) g, (B, ) gy(P, 2 By) dv," dv, " ds,’ d§,°

521 S].' 81]1' aﬂ2l
A ag, (P, s 1)
”‘AS‘ fl‘@;,y)# S 1B} € (B,") g, (P,", P,") g, (B,". ) 22 4y " dv," ds 1 ds, !
23, 2 o " . 2 -2 2'=2 -2 2°~2 =2 am, -2 =2 N1 22
35, § 1 V2 V2 2
+, (3. 14)

The Green's functiong (P, P') has been determined? for the important case in
which § is a plane surface. The result is given here:

+ik[P-P'|  +ik|B-P|
|P-P| | B-P'|
The image of the point P in the plane S is denoted by P (see Fig. 1), In

Eq. (3.14) the plus sign is taken where a subscript 1 appears, and the minus
sign is taken where a subscript 2 appears.

gp, p =& (3. 15)

It should be noted that an identical expression for l" (B, Py, v) can be
obtained by a procedure that iterates for the transform of the mutual coherence
function itself rather than for the Green's function of the Helmholtz equation



with a variable coefficient, This procedure puts Eqs. (3.7a and b), the pair of
differential equations, in the form of a pair of equivalent integral equations by

use of Green's functions. Thus,

A 9g. (P, S.")
r( 2' V) = S r(§1" -S-Z’ v) 1=t =10 d51|

1
5, ™
+k2§ e(P')IQ(P'S) (B, B,") av;'
v, =100 S 2 8y 5 ) (3. 16a)
A (®,, 5,"
Fe,p, v - g P, s 2222220
o1,
+k2§ € (P ')1/'\'(P P,) g, (B, P,") dV,'
J St RS €2'%p 2o 2" (3. 16b)
2

Here, the Green's function g (P, P') is identicaltothe Green's functionof Eq. (3. 11),
and the representation k2(_lf) = k-g[l +€ (P)] has again been employed. The in-
tegral equations, Egs. (3.16a and b), are then used as the basis for an interative
procedure that starts with the surface terms as a zeroth order approximation

and by successive substitutions yields the same iterative series for (fl, _1_32)

as obtained above.

The form of the iterative solution, Eq. (3.14), obtained for the propagation
of the mutual coherence function in a medium in which the refractive }ndex

varies is that of the uniform space solution

1 1
S‘ S‘ P(§1" §2') 331(21: _S..l ) 3g2(_1?2;'_s_2 ) d§1' d§2'
§2I_Sll 3771 3772
modified by a series of correction terms that involve volume integrals of a
quantity associated with the fluctuations of the refractive index. When the
refractive index is constant, the correction terms become zero and the solution

reduces to the uniform space solution.

The iterative solution obtained is that for a single spectral component of
r 12(7‘). To obtain I ‘12(7), the iterative solution I 12(‘l') must be substituted
in Eq. (3.2) and the integration over ¥ performed. However, in the case of
quasi-monochromatic fields, it is unnecessary to perform the actual integration,
A quasi-monochromatic field is one for which the effective spectral range, Av,
is small compared with the meanfrequency, v; that is, Ay/v < < 1. For this case,
provided that the time difference 7 is small compared with the coherence time
1/Ap, it is known 1, 2 that the mutual coherence function is of the form
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) = Ty @27 7| <<1/ap (3.17)

where v is the mean frequency of l"m(‘r). Substituting from Eq. (3. 17) into
Eq. (3.1) yields

(Vn® + k2P _, P [},0) =0 (m = 1,2) (3. 18)
where
- _ 27V .
k (P y V) =
-—m
cE_)

Thus, under the quasi-monochromatic approximation of narrow spectral
width and small path differences, it hasbeen shown that 1"12(0) satisfies the same
pair of Helmholtz equations, Eq. (3.5) , as does l/'\lz(V) with v now fixed at the
mean frequency V. Theboundary conditionbecomes I” (§1. Sy, 0) and the iterative
solution yields 1"12(0) which when substituted in Eq. (3. 17) yields the quasgi-
monochromatic solution. (It should be noted that the varying propagation ve-
locity implies that the time difference 7 may be different for two paths of the
same geometric length.)

The Green's function formulation of the solution in Eq. (3.9) leads directly
to an important result which we state as a theorem.

Theorem

The field produced by a quasi-monochromatic coherent source extended
over a surface in contact with a source-free time-invariant medium witharbitrary
refractive index variation (in space) is itself coherent.

Proof

The proof of this theorem starts with the resul'(:2 that a quasi-monochro-
matic field (source) is coherent if, and only if, the mutual intensity ’"12‘0’ cah
be represented as the product of a wave function U, evaluated at _131, with its
complex conjugate U¥, evaluated at 22 ; that is

re, e, 0=U({E) U (®).

In the quasi-monochromatic approximation it is seen from Eq. (3. 9) and the
discussion above that

8G,(P), S, 9G,(P,, 5,")

re, Pz { rs s 0
. - — ! '
5, 5, o, )

. d8,'dS ',(|1|<< -—L) (3.19)
X =1 =2 Ay )
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The assumption that the source is coherent allows the factorization

G (P S" an(fz' 5"
r(PID P, » S‘ U(S' ds! S‘ U* (§') ey |1
o an & on’ (3. 20)

where the notation has been changed slightly to make the relationship between
the bracketed quantities more apparent., The proof will be complete if it can be
shown that

8G2 ac;l*

o' o'

To prove this relationship the following 1emma3 is used:
r«eg, B,, 00 = I'(E,, B, 0). (3:21)
Substitution from Eq. (3.20) into Eq. (3. 21), y1e1ds

G* (P, 8 3G *(P,, S
[S U*(S") dSJ[S u(s") _2_:2-_:_.]
an'

(P,, 8" 8G,(P,, S')
[S Uy —L=¥ = %15 dS] [g Uy —2ZL = dS']. (3.22)
gt on'
S
Pu '3'
L] S| P
P.zi ¢ y 2
S2

FIG. 1. Geometiry For Green's Function.
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Since each of the bracketed quantities is a function of one point only, the cor-
responding quantities can be equated, yielding

8G,* )
jﬁu*(g')—aﬁ1 (p,.8"ds' = fms(g) a7 (B8 ds' (3. 23)
s' s'

and the desired relationship follows immediately.

4. Statistically Homogeneous Medium
An important case is that in which the refractive index is a stationary

(spatially homogeneous) isotropic random process. Assume that the fluctuations,
€ (P), satisfy the relation

€ e®,) = €2(B) Clp).
Here a_-lfl) € (P_z) denotes the average of € (_I_’l) € (_1_32) taken over all pairs of

points Bl and EZ a fixed distance p apart; € 2(_13) is the mean square deviation
(of the dielectric constant); and C(p) is a correlation function that depends on
the separation distance only.

In practice, the most that can be expected from this formulation of the pro-
pagation problem is a prediction of effects 'on the average.' For example,
suppose there is a plane quasi-monochromatic light source on a slab of
ground glass and it is desired to predict the distribution of the mutual coher-
ence function on the far side of the slab. The solution will yield a prediction
of the coherence function averaged over a large number of different slabs of
glass with the same statistical properties. In other words, the ensemble aver-
age distribution of the mutual coherence function can be predicted, but the dis-
tribution for a particular slab cannot,

Suppose, then, that a series of measurements are made to determine the
average value of I" (P, P,, 7) which corresponds to a series of independent
but statistically identical samples of a medium with refractive index fluctua-
tions. The source distribution I" (S, 8,, 7) and the geometrical relations
are assumed to be identical for the entire series of measurements. The
average can be idealized by letting the number of experiments N become very
large and determining the limit of the average as N—% . The jth measure-
ment is denoted by I" i (P}, Py, 7) and the ensemble average of
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re, p,1 ,[I"(gl, _132,7)] is defined by

[re,. 2] - N_,ooﬁz ry @y 27

With reference to Eq. (3, 14), recallmg that only € varies from one measure-
ment to another, and with the quasi-monochromatic approximation, the follow-
ing equation can be written:

iv %, 9%
(F(®, Py, ) =e 2’”"{§ S res,, s, o _1’_£'ds1- ds,'
So' S, on," oy

%,

2 1" 1"

+k gS ”51'-2'°’;7'2‘. ‘57"[6(?1 0 gy (B By
1

“
agl B dV "ds, ' dS,’

3771'

2 1 1 8g1 " "
e [ { ey, 0~ [ le@, e By
52 S1 1 V2
(P u’ 5.1)
o B2'Ep s 5

1] '
37)2' de dS1 dSz'

where the ensemble average has been taken inside the integrals. Since the
samples of the medium associated with the series of experiments are assumed
to be independent and statistically homogeneous, the ensemble average of

€ (_131"), € (El”) € (22"), and so on (formed with fixed points and different
samples of the medium) can be equated with the averages of these same
quantities obtained with a particular sample and varying the points (distance

relationships are preserved when these enter into consideration). Hence,

[G(gm")] =6(12) =0, (m = 1, 2) ’

[e(® e, ") = €@ Me®, "= e2(P)Clp) , (m = 1, 2), and so on.
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Thus, to second order terms the result that the ensemble average of the
mutual coherence function (in the quasi-monochromatic approximation) is
given by

-9nipy 9%

[F(B, Py, 7 = e 2“‘”{§ f I, 8,0 —L —2 ds 1 as,
D1 2, } , 21 92

Sll Szl anl anz

—_— %, (P,_,8S.)
+x* e 2(p) g g re;s,, o —2 22
Sl

Szl 1 3772'

g, (P,", s."

X S\ ‘S‘ C('-}'—)l“’-l)]_”l) gl‘f]"'gi") gl (21"' Bl)u
'
V1” Vl'" 3771

dvin gy
x AV dv, ", ds ' ds,"

skt e2(p) ( 5 e, sy o ( (BB, g, @, ", B
] V 1" ‘V "

Sy’ 8 1 Va
%, (®,", 8, 8 (P, S,")
x E(By" By 1 1 2_2 2 V)" dV," dS; * dS,"
; anlr 37’2'
% (P, S,)
+k4 GZ(E)S' S\ I"(§1|' §2|‘ 0) 1=1° =1 S. S‘ C(Ipzvn_Pznl) %
SZ' Sll 37}1 V2” VZ'H

3g2 (22”§2')

% g2(22”" -13211) g2(£)2u‘ 22)
ony

dV2"' de” d§1' d§2'.

The statistics of the medium enter into this expression in the mean square of

the refractive index fluctuation, 62(P), and the two-point correlation function
C(p) which must be integrated over the volume of the medium,
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